随着经济水平的提升以及生活方式的改变,结直肠癌(CRC)的发病率正逐渐升高,同时早发性结直肠癌在全球范围内也越来越受到关注。在过去的几十年中,基础与临床研究的突破大大加深了我们对CRC生物学行为、诊断和治疗策略的认知,同时显著改善了患者的总生存(OS)获益。本文聚焦CRC领域,从多维度带读者纵观不同视角下的研究进展。

文章分为上下两篇,上篇已对EOCRC以及CRC的流行病学、易感因素、分子分型和筛查诊断进行介绍,并阐述了早期CRC的治疗策略()。在下篇,我们将重点介绍转移性结直肠癌(mCRC)的治疗策略,并带读者一同了解目前CRC领域的争议与探索。

mCRC的一般治疗原则

mCRC患者的预期寿命在过去十年中有所增加,得益于全身治疗和局部治疗等策略的进展,患者的中位OS已达21~40个月¹-⁴。对于不可手术的mCRC患者,预计的5年OS率为15.6%⁵。对于mCRC,消融和SBRT等局部治疗手段被认为可能有助于提高无病生存期(DFS),并存在潜在的OS获益趋势⁶-⁹,因此多学科诊疗思想指导下的个性化治疗策略在mCRC的治疗中极为重要。

对于存在初始不可切转移灶的mCRC患者,切除原发灶尚未被证明可以改善无症状患者的5年OS率¹⁰-¹²。在III期SYNCHRONOUS试验中,mCRC患者被随机分配接受全身化疗或原发灶切除治疗,结果提示OS未见显著获益(中位OS:18.6个月 vs. 16.7个月)¹⁰。因此,除非存在临床指征,否则不建议常规行原发灶切除术。

mCRC的一线及二线治疗

初始不可切mCRC的一线全身治疗策略通常需根据二代测序的分子检测结果和临床需求决定(图1)。


图1 CRC的治疗路径

约5%的患者分子表型为dMMR/MSI-H,KEYNOTE-177试验探索了一线帕博利珠单抗对比标准化疗的应用,提示此类患者可通过免疫检查点抑制剂治疗改善生存获益,从而将免疫治疗确立为新的一线标准治疗策略¹³。此外,双免联合治疗等策略显示出了极富前景的探索价值。CheckMate-142研究¹⁴和CheckMate-8HW研究¹⁵等评估了CTLA-4抗体伊匹木单抗联合PD-1抗体纳武利尤单抗的应用,并取得了令人振奋的结果。

而对于初始不可切的pMMR/MSS患者,分子突变状态、原发肿瘤位置和患者体能状况是治疗选择的主要驱动因素。化疗依然是此类患者的治疗基石,合并疾病、年龄和体能状态评分共同决定着化疗强度。在综合考虑上述因素的情况下,临床可选策略包括氟尿嘧啶单药治疗、氟尿嘧啶联合奥沙利铂或伊立替康双药治疗(FOLFOX、CAPOX、FOLFIRI)以及氟尿嘧啶、奥沙利铂和伊立替康三药联合治疗(FOLFOXIRI)¹⁶-¹⁷。此外,替吉奥是一种主要用于亚洲人群的口服氟嘧啶类药物,基于一项回顾性队列研究的结果,欧洲药品管理局(EMA)批准其可作为单一或联合治疗应用于5-FU不耐受的患者¹⁷。

RAS突变情况是公认的EGFR单抗(西妥昔单抗或帕尼单抗)疗效预测因子,EGFR单抗已成为RAS野生型患者的一线标准治疗选择,但BRAF V600E突变型肿瘤从EGFR单抗治疗中的获益微乎其微¹⁸-²⁰,HER2扩增型肿瘤也对抗EGFR治疗具有抵抗性²¹。此外,即便RAS和BRAF表现为野生型,右侧原发肿瘤也难以从EGFR单抗的治疗中获益。而对于左侧原发肿瘤且RAS表达野生型的mCRC患者,III期、前瞻性PARADIGM研究显示,FOLFOX+帕尼单抗相较于FOLFOX+贝伐珠单抗可延长OS,提示该方案应作为首选方案⁴,²²。

对于适宜接受强化化疗的患者,FOLFOXIRI三药化疗联合贝伐珠单抗方案的OS、无进展生存期(PFS)、总体缓解率(ORR)和手术切除转化率的获益均优于双药化疗联合贝伐珠单抗治疗。然而TRIPLETE研究表明,对于左侧原发肿瘤且RAS表达野生型的mCRC患者,mFOLFOXIRI+帕尼单抗相较于FOLFOX+帕尼单抗未见显著获益²³。

对于无法手术切除的pMMR/MSS患者,一线治疗通常持续4-6个月,继以氟尿嘧啶和相同的靶向治疗进行维持治疗,直至疾病进展或不耐受。对于mCRC患者,尽管年龄未被列为任何治疗的绝对禁忌症,但建议对患者进行全面的老年学评定,以评估患者的治疗耐受性和依从性²⁴。

一线治疗后,若患者出现疾病进展或治疗不耐受,在实验室指标正常且患者体能状态良好的情况下,可考虑进行二线治疗。治疗选择主要取决于患者的合并症、既往治疗获益、耐受性以及RAS突变状态。通常情况下,二线治疗策略应基于一线治疗的方案切换化疗基础药物,若一线治疗基于奥沙利铂,则二线治疗应过渡为以伊立替康为基础的方案,反之亦然。在二线治疗中继续使用抗血管生成药物(包括贝伐珠单抗、阿柏西普和雷莫西尤单抗)被认为可改善OS ²⁵-²⁷,然而二线治疗继续使用抗EGFR药物则未见OS获益²⁸。

后线治疗——精准治疗的绝佳舞台

精准治疗已成为mCRC后线治疗的指导性理念,多种基因表型都有着潜在的临床靶向治疗选择,如图2所示²⁹-³¹。


图2 mCRC各基因型改变的临床可选治疗方案(A)和发生率(B)

对于NTRK重排肿瘤(<0.5%),拉罗替尼和恩曲替尼是可选的治疗策略之一。对于BRAF V600E突变(<10%),BRAF V600E抑制剂联合EGFR单抗的OS获益显著优于传统治疗。抗HER2治疗(曲妥珠单抗+拉帕替尼、帕妥珠单抗、tucatinib,或德曲妥珠单抗)在mCRC中的应用日益广泛, MOUNTAINEER试验评估了曲妥珠单抗+ tucatinib治疗HER2阳性难治性mCRC的疗效,结果显示ORR为38.1%,中位PFS可达8.2个月³²。KRAS G12C突变相对少见(5%),但近年来的多项研究进展使该靶点被寄予厚望。例如,CodeBreaK 300研究显示,sotorasib联合帕尼单抗可以显著延长KRAS G12C突变型mCRC患者的中位PFS至5.6个月,并显著改善患者ORR(26.4% vs. 0)³³。无独有偶,KRYSTAL-1研究显示,adagrasib联合西妥昔单抗的ORR为46%,疾病控制率(DCR)为100%,中位PFS达6.9个月³⁴。

对于无靶向突变的化疗难治性mCRC患者,曲氟尿苷替匹嘧啶、呋喹替尼和瑞格非尼已被证实可改善OS。其中呋喹替尼作为国产原研抗血管生成小分子TKI,两项III期试验(FRESCO和FRESCO2)³⁵-³⁶评估了其在化疗难治性mCRC后弦治疗中的应用。结果显示呋喹替尼组的OS和PFS获益显著优于安慰剂,安全性和耐受性良好,且获益独立于既往治疗线数与治疗史。

腹膜转移

腹膜转移在mCRC中的发生率高达17%,约2%的患者为孤立性腹膜转移³⁷。此类肿瘤通常具有多种不良预后特征,包括原发肿瘤位于右侧结肠和BRAF V600E突变等³⁸,影像学手段在评估此类肿瘤负担方面的敏感性较低,增加了诊断的难度。一项针对14项随机III期试验的meta分析指出,孤立性和非孤立性腹膜转移患者的OS表现均劣于无腹膜转移患者³⁹。针对腹膜转移患者,三项III期试验评估了细胞减灭术和高温腹腔化疗(HIPEC)的应用,其中PRODIGE-7研究⁴⁰表明细胞减灭术可能具有潜在的临床获益,而HIPEC对于IV期患者未显示出显著获益。COLOPEC和PROPHYLOCHIP试验则提示,HIPEC对高危III期mCRC患者无任何临床获益⁴¹-⁴²。因此,针对伴腹膜转移mCRC患者,目前的治疗建议仍为全身化疗,同时基于多学科共同决策,对特定患者考虑行细胞减灭术,HIPEC的应用仍处于探索阶段。

监测与随访

经根治性手术和围手术期治疗后,约30%~50%的局部进展期CRC患者会复发⁴³,且大多数发生于5年以内,因此此类患者将接受为期5年的密切监测,监测手段因不同国家或地区的医疗水平而异。根据NCCN、ESMO和泛亚洲诊疗指南⁴⁴-⁴⁶,对于I期患者,建议在术后1、3和5年进行结肠镜检查。对于II-III期患者,建议在初始的2-3年内,每3-6个月进行一次临床评估和血清CEA水平检测,之后每6个月进行一次,直至术后5年。术后1年时应进行结肠镜检查,之后每3-5年进行一次。建议在5年内每6-12个月进行一次胸部、腹部和盆腔CT扫描。不建议进行常规PET-CT监测。对于接受转移性切除术的IV期疾病患者,由于复发风险很高,建议使用序贯诊断成像(SDI)进行密切监测。

争议与探索

肝转移

肝脏是CRC最常见的转移部位,如何处理肝转移灶是mCRC临床治疗中的关注焦点。EORTC 40983是一项针对可切除结直肠肝转移的III期随机试验,旨在评估手术联合围手术期FOLFOX4化疗对比单纯手术的应用。结果显示,患者DFS有所改善,但OS未见统计学获益⁴⁷。同样的,随机、II/III期研究JCOG0603显示,术后mFOLFOX6辅助治疗相较于单纯肝切除术可改善DFS,但OS获益无差异⁴⁸。因此,围手术新辅助和辅助化疗的作用仍然是临床中极具讨论价值的问题。

对于肝动脉输注治疗,早期探索因多为追溯性研究,因此数据质量受到较大影响,目前该策略在临床治疗中的作用正在得到更为全面的评估,包括PUMP、EA2222和NCT05863195研究等。此外,多学科联合治疗的作用也正在探索中。III期ERASur试验旨在评估全身化疗联合或不联合立体定向放疗、消融和手术的疗效,研究将OS设置为主要终点,期待更多数据的披露。

对于结直肠癌肝转移,另一种较为激进的治疗策略是肝移植。在过去,mCRC全身治疗的疗效不佳,显著影响了肝移植的可行性。在最近的二十年中,全身治疗的疗效显著提高,临床中肝移植的应用也逐渐上升。单臂、前瞻性SECA-II试验表明,肝移植后患者的2年DFS率可达44%⁴⁹。多中心、开放标签、前瞻性、随机对照TransMet试验表明,对于不可切结直肠癌肝转移患者,肝移植联合化疗的5年OS率显著优于单纯化疗(56.6% vs. 12.6%;HR=0.37,95%CI:0.21−0.65,p=0.0003)⁵⁰。这些结果表明,肝移植可能是结直肠癌肝转移行之有效的治疗策略,更大规模的验证性研究正在进行中,长期随访结果或许将带来更有价值的数据。

EGFR再挑战

对于RAS野生型mCRC,一线EGFR单抗治疗后,大部分患者会因RAS突变等获得性耐药而导致疾病进展。对于进展后的患者,通常方案为添加抗血管生成药物并切换化疗基础药物。但越来越多的临床研究表明,抗EGFR治疗的再应用可能行之有效。有研究提示,在停止抗EGFR治疗后,获得性RAS突变片段会逐渐衰减(半衰期约为4个月),而RAS/BRAF的野生序列可能会增殖,从而恢复对抗EGFR药物的敏感性,因此,抗EGFR治疗再挑战的理念应运而生。

随机对照、II期VELO研究提示,EGFR单抗再挑战联合标准治疗相较于标准治疗可改善患者的PFS⁵¹。然而更多研究显示,EGFR细胞外结构域、BRAF、HER2、RAS或MET基因扩增等继发性耐药基因组改变也与疗效结果相关。因此,可能从EGFR再挑战中获益的患者群需要更为精细的筛选⁵²-⁵³。

循环肿瘤DNA

循环肿瘤DNA(ctDNA)对CRC的潜在应用价值最初于II期CRC患者术后复发监测中发现,III期 DYNAMIC研究提示,ctDNA指导的术后治疗策略可实现II期CRC术后辅助化疗的降级,在不影响患者无复发生存(RFS)的情况下提高患者生活质量。目前多项前瞻性III期研究正在进行中,包括CIRCULATE-US、CIRCULATE-Japan和DYNAMIC III等,旨在基于ctDNA结果指导临床治疗方案的强化或降级,最大化患者获益。仅就目前而言,ctDNA的价值尚不确定,尚不推荐用于常规CRC筛查⁵⁴。

对于部分新治疗手段,ctDNA被认为具有较为可观的辅助应用前景。例如,对于EGFR再挑战策略,由于获得性耐药可能发生于患者体内不同病灶中,因此通过重复肿瘤活检技术判断患者是否发生获得性耐药极为困难。ctDNA可通过无创的方式鉴别新发变异并追踪肿瘤的发展情况,进而提供更准确的耐药机制图谱⁵⁵。

总结

作为全球常见的恶性肿瘤,通过筛查技术降低CRC的发病率至关重要,特别是在预计发病率持续升高的发展中国家。癌症筛查可明确降低发病率和死亡率,但由于缺乏统一的国际指南,筛查标准尚有待明确,这在一定程度上复杂化了筛查的实际应用。此外,由于年轻患者的发病率不断上升,EOCRC正日益受到关注。

在治疗mCRC时必须考虑基因型表达、微卫星和错配修复状态、原发肿瘤位置、既往治疗史和肿瘤负担等独特的肿瘤特征,以共同指导治疗决策。对于直肠癌,治疗时应同步关注器官保存的可能性, TNT的治疗顺序是重要的影响因素之一。对结直肠癌肝转移、EGFR再挑战和ctDNA的探索正积极进行中,作为新兴诊断工具,ctDNA在指导辅助治疗选择、检测最小残留疾病(MRD)、监测患者复发风险和耐药性等方面表现优秀,若未来ctDNA的作用得到验证,现有的临床诊疗手段将迎来进一步的升级。

参考文献(向上滑动查看):

1 Sargent D. Improved outcomes in metastatic colon cancer: giving credit where credit is due. JAMA Oncol 2015; 1: 795–96.

2 Shen C, Tannenbaum D, Horn R, et al. Overall survival in phase 3 clinical trials and the surveillance, epidemiology, and end results database in patients with metastatic colorectal cancer, 1986–2016: a systematic review. JAMA Netw Open 2022; 5: e2213588.

3 Venook AP, Niedzwiecki D, Lenz HJ, et al. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: a randomized clinical trial. JAMA 2017; 317: 2392–401.

4 Yamazaki K, Muro K, Watanabe J, et al. Efficacy of panitumumab in patients with left-sided disease, MSS/MSI-L, and RAS/BRAF WT: a biomarker study of the phase III PARADIGM trial. J Clin Oncol 2023; 41: 3508.

5 National Cancer Institute. SEER cancer stat facts: colorectal cancer. https://seer.cancer.gov/statfacts/html/colorect.html (accessed Nov 11, 2023).

6 Wong SL, Mangu PB, Choti MA, et al. American Society of Clinical Oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J Clin Oncol 2010; 28: 493–508.

7 de Baère T, Aupérin A, Deschamps F, et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann Oncol 2015; 26: 987–91.

8 Shady W, Petre EN, Do KG, et al. Percutaneous microwave versus radiofrequency ablation of colorectal liver metastases: ablation with clear margins (A0) provides the best local tumor control. J Vasc Interv Radiol 2018; 29: 268–75.

9 Weiser MR, Jarnagin WR, Saltz LB. Colorectal cancer patients with oligometastatic liver disease: what is the optimal approach? Oncology 2013; 27: 1074–78.

10 Rahbari NN, Biondo S, Feißt M, et al. Randomized clinical trial on resection of the primary tumor versus no resection prior to systemic therapy in patients with colon cancer and synchronous unresectable metastases. J Clin Oncol 2022; 40: 3507.

11 Koopman M, van der Kruijssen DEW, Elias SG, et al. Upfront palliative resection of primary tumor versus no resection in patients with synchronous metastatic colorectal cancer: the randomized phase 3 CAIRO4 study of the Dutch Colorectal Cancer Group (DCCG). J Clin Oncol 2023; 41: 3517.

12 Kanemitsu Y, Shitara K, Mizusawa J, et al. Primary tumor resection plus chemotherapy versus chemotherapy alone for colorectal cancer patients with asymptomatic, synchronous unresectable metastases (JCOG1007; iPACS): a randomized clinical trial. J Clin Oncol 2021; 39: 1098–107.

13 Diaz LA Jr, Shiu K-K, Kim T-W, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol 2022; 23: 659–70.

14 Overman, MJ et. al. Nivolumab (NIVO) ± ipilimumab (IPI) in patients (pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): Five-year follow-up from CheckMate 142. ASCO 2022, Abstract 3510.

15 André, T et. al. Nivolumab (NIVO) plus ipilimumab (IPI) vs chemotherapy (chemo) as first-line (1L) treatment for microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): First results of the CheckMate 8HW study. ASCO GI 2024, LBA 768.

16 Cervantes A, Adam R, Roselló S, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 34: 10–32.

17 Osterlund P, Kinos S, Pfeiffer P, et al. Continuation of fluoropyrimidine treatment with S-1 after cardiotoxicity on capecitabine- or 5-fluorouracil-based therapy in patients with solid tumours: a multicentre retrospective observational cohort study. ESMO Open 2022; 7: 100427.

18 Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013; 369: 1023–34.

19 Pietrantonio F, Petrelli F, Coinu A, et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer 2015; 51: 587–94.

20 Rowland A, Dias MM, Wiese MD, et al. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br J Cancer 2015; 112: 1888–94.

21 Meric-Bernstam F, Hurwitz H, Raghav KPS, et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2019; 20: 518–30.

22 Yoshino T, Uetake H, Tsuchihara K, et al. PARADIGM study: a multicenter, randomized, phase III study of mFOLFOX6 plus panitumumab or bevacizumab as first-line treatment in patients with RAS (KRAS/NRAS) wild-type metastatic colorectal cancer. J Clin Oncol 2021; 39: 85–85.

23 Rossini D, Antoniotti C, Lonardi S, et al. Upfront modified fluorouracil, leucovorin, oxaliplatin, and irinotecan plus panitumumab versus fluorouracil, leucovorin, and oxaliplatin plus panitumumab for patients with RAS/BRAF wild-type metastatic colorectal cancer: the phase III TRIPLETE study by GONO. J Clin Oncol 2022; 40: 2878–88.

24 Papamichael D, Aapro M. Geriatric factors and outcomes in metastatic colorectal cancer. Eur J Cancer 2017; 74: 96–97

25 Bennouna J, Sastre J, Arnold D, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol 2013; 14: 29–37.

26 Tabernero J, Yoshino T, Cohn AL, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 2015; 16: 499–508.

27 Van Cutsem E, Tabernero J, Lakomy R, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012; 30: 3499–506.

28 Ciardiello F, Normanno N, Martinelli E, et al. Cetuximab continuation after first progression in metastatic colorectal cancer (CAPRI-GOIM): a randomized phase II trial of FOLFOX plus cetuximab versus FOLFOX. Ann Oncol 2016; 27: 1055–61.

29 Mateo J, Chakravarty D, Dienstmann R, et al. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 2018; 29: 1895–1902.

30 Mosele F, Remon J, Mateo J, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol 2020; 31: 1491–1505.

31 Cervantes A, Adam R, Roselló S, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment, and follow-up. Ann Oncol 2023; 34: 10–32.

32 Strickler JH, Cercek A, Siena S, et al. Tucatinib plus trastuzumab for chemotherapy-refractory, HER2-positive, RAS wild-type unresectable or metastatic colorectal cancer (MOUNTAINEER): a multicentre, open-label, phase 2 study. Lancet Oncol 2023; 24: 496–508.

33 Fakih M G, Salvatore L, Esaki T, et al. Sotorasib plus panitumumab in refractory colorectal cancer with mutated KRAS G12C[J]. New England Journal of Medicine, 2023.

34 Yaeger R, Weiss J, Pelster M S, et al. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C[J]. New England Journal of Medicine, 2023, 388(1): 44-54.

35 Li J, Qin S, Xu RH, et al. Effect of fruquintinib vs placebo on overall survival in patients with previously treated metastatic colorectal cancer: the FRESCO randomized clinical trial. Jama 2018; 319: 2486–96.

36 Dasari A, Lonardi S, Garcia-Carbonero R, et al. Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): an international, multicentre, randomised, double blind, phase 3 study. Lancet 2023; 402: 41–53.

37 Benson AB, Venook AP, Al-Hawary MM, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2021; 19: 329–59.

38 Dong X-D. Right sided colon cancer and peritoneal carcinomatosis. Ann Laparosc Endosc Surg 2019; 4: 4.

39 Franko J, Shi Q, Meyers JP, et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol 2016; 17: 1709–19.

40 Quénet F, Elias D, Roca L, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2021; 22: 256–66.

41 Klaver CEL, Wisselink DD, Punt CJA, et al. Adjuvant hyperthermic intraperitoneal chemotherapy in patients with locally advanced colon cancer (COLOPEC): a multicentre, open-label, randomised trial. Lancet Gastroenterol Hepatol 2019; 4: 761–70.

42 Goéré D, Glehen O, Quenet F, et al. Second-look surgery plus hyperthermic intraperitoneal chemotherapy versus surveillance in patients at high risk of developing colorectal peritoneal metastases (PROPHYLOCHIP-PRODIGE 15): a randomised, phase 3 study. Lancet Oncol 2020; 21: 1147–54.

43 Seo SI, Lim SB, Yoon YS, et al. Comparison of recurrence patterns between ≤5 years and >5 years after curative operations in colorectal cancer patients. J Surg Oncol 2013; 108: 09–13.

44 Benson AB, Venook AP, Al-Hawary MM, et al. Colon Cancer, Version 2·2021, NCCN Clinical Practice Guidelines in oncology. J Natl Compr Canc Netw 2021; 19: 329–59.

45 Argilés G, Tabernero J, Labianca R, et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020; 31: 1291–1305.

46 Yoshino T, Argilés G, Oki E, et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis treatment and follow-up of patients with localised colon cancer. Ann Oncol 2021; 32: 1496–1510.

47 Nordlinger B, Sorbye H, Glimelius B, et al. Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol 2013; 14: 1208–15.

48 Kanemitsu Y, Shimizu Y, Mizusawa J, et al. Hepatectomy followed by mFOLFOX6 versus hepatectomy alone for liver-only metastatic colorectal cancer (JCOG0603): a phase II or III randomized controlled trial. J Clin Oncol 2021; 39: 3789–99.

49 Dueland S, Syversveen T, Solheim JM, et al. Survival following liver transplantation for patients with nonresectable liver-only colorectal metastases. Ann Surg 2020; 271: 212–18.

50 Adam R, Piedvache C, Chiche L, et al. Liver transplantation plus chemotherapy versus chemotherapy alone in patients with permanently unresectable colorectal liver metastases (TransMet): results from a multicentre, open-label, prospective, randomised controlled trial[J]. The Lancet, 2024, 404(10458): 1107-1118.

51 Napolitano S, De Falco V, Martini G, et al. Panitumumab Plus Trifluridine-Tipiracil as Anti–Epidermal Growth Factor Receptor Rechallenge Therapy for Refractory RAS Wild-Type Metastatic Colorectal Cancer: A Phase 2 Randomized Clinical Trial[J]. JAMA oncology, 2023.

52 Misale S, Di Nicolantonio F, Sartore-Bianchi A, Siena S, Bardelli A. Resistance to anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution. Cancer Discov 2014; 4: 1269–80.

53 Siravegna G, Mussolin B, Buscarino M, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 2015; 21: 827.

54 WHO. Cancer screening in the European Union. 2017. https:// screening.iarc.fr/EUreport.php (accessed May 15, 2023).

55 Malla M, Loree JM, Kasi PM, Parikh AR. Using Circulating Tumor DNA in Colorectal Cancer: Current and Evolving Practices. J Clin Oncol. 2022;40(24):2846-2857. doi:10.1200/JCO.21.02615

撰写:Babel

排版:Babel

执行:Aurora

本平台旨在为医疗卫生专业人士传递更多医学信息。本平台发布的内容,不能以任何方式取代专业的医疗指导,也不应被视为诊疗建议。如该等信息被用于了解医学信息以外的目的,本平台不承担相关责任。本平台对发布的内容,并不代表同意其描述和观点。若涉及版权问题,烦请权利人与我们联系,我们将尽快处理。

ad1 webp
ad2 webp
ad1 webp
ad2 webp