近期,天水师范大学/江苏师范大学孟来生教授课题组在植物学主流期刊Plant Cell Environment(IF5-year=7.6,一区TOP期刊)发表了题为The interaction between ABA and sugar signaling regulates stomatal production in systemic leaves by controlling sucrose transport和The Different Concentrations of Applied Exogenous Sugars Widely Influence the Specificity, Significance and Physiological Relevance of Study Outcomings的两篇综述论文,并在Molecular Plant Pathology(IF5-year=6.0,一区TOP期刊)发表了题为Crosstalk between Ethylene and JA/ABA/Sugar Signaling in Plants under Physiological and Stress Conditions的一篇综述论文。以上三篇综述论文从不同角度深入解析了植物如何在复杂多变的环境中进化出不同的信号通路,并重点解析近年来许多研究由于没有深刻理解这些信号通路进化过程的极端复杂性,从而得出误导性的结论。
在复杂多变的自然环境下,如干旱、极端温度、大风、盐碱地、极端光等等,都会极大的影响着植物的生长发育以及产量。另外植物内源激素信号和营养信号的强弱也同样程度的影响着植物的生长发育以及产量。例如,脱落酸ABA作为一种关键的植物激素,在应对非生物胁迫(如干旱盐碱、大风和极端温度等)以及影响植物生长发育中发挥着中心作用。而糖信号作为一种关键的营养信号在植物生长、发育和应对胁迫等方面也起着核心作用。在长期的进化过程中,植物已经对特定的环境进化出不同的信号转导通路,例如生理状态下,植物有专门的信号转导通路应对,而在干旱缺水的情况下,植物又有专门的一套应对通路。又如,在很多情况下,干旱诱导ABA急剧增加,导致气孔密度减少,水分损失减少;但植物的生物量也随之减少。但在Prosopis strombulifera中,干旱会诱导ABA急剧增加,气孔密度增加。这个导致植物抗旱性减弱,但生物量增加,使得植物更为强壮,抵御不利环境的压力增加(Reginato et al., 2013)。以上两种截然不同的植物应对环境的策略由不同的信号转导通路来承担。这种现象也广泛存在。
美国科学院院士斯坦福大学Bergmann课题组结论:低浓度糖抑制气孔发育,而乙烯信号促进气孔发育(Gong et al., 2021)。因此,糖信号和乙烯信号以相互拮抗的方式调控气孔发育。基于这个结论,他们认为葡萄糖感受器HXK1和乙烯信号核心元件EIN3不参与糖信号和乙烯信号拮抗调控气孔发育。通过深入分析这篇论文,孟来生课题组发现:主要结论与他们课题组的相关研究(Bao et al., 2023),山东大学白明义课题组(Han et al., 2020, 2022)以及日本研究人员(Akita et al., 2013)的结论相冲突。这些课题组的研究结果显示:低浓度糖促进气孔发育,而高浓度糖抑制气孔发育。
通过深入分析发现,Bergmann课题组没有弄清糖和乙烯信号相互拮抗调控植物发育是特异的和有特定条件的。已有的报道显示,在拟南芥(Jeong et al., 2010),西兰花(Nishikawa et al., 2005),水稻(Kobayashi and Saka., 2000),烟草(Philosoph-Hadas et al., 1985)等植物中发现:低浓度糖和乙烯相互协同调控植物发育。而高浓度(或过量)糖和乙烯相互拮抗调控植物发育(Jang et al., 1997; Zhou et al., 1998; Moore et al., 2003; Cho et al., 2010; Karve et al., 2012)。Cho et al (2010)深入解析发现:糖在低浓度跟乙烯信号没有拮抗关系。
基于以上深入解析发现:Bergmann课题组结论:低浓度糖抑制气孔发育,而乙烯信号促进气孔发育(Gong et al., 2021)是基于低糖和乙烯相拮抗调控气孔发育。这个结论明显与以上系列一流期刊论文结论相反。究其原因就是没有弄清楚糖和乙烯信号相互拮抗调控植物发育是特异的和有特定条件的。因此,在这个错误结论基础上又得出了一系列误导性的结论(如:他们认为葡萄糖感受器HXK1和乙烯信号核心元件EIN3不参与糖信号和乙烯信号拮抗调控气孔发育。)。
该系列论文受到国家自然科学基金(31960268),甘肃省重点研发计划(23YFFE0001),和云南省科学院基础基金资助(2023KYZX-15)的资助。
参考文献:
Akita, K., Hasezawa, S. & Higaki, T. (2013) Breaking of Plant Stomatal One-Cell-Spacing Rule by Sugar Solution Immersion. PLoS ONE, 8, e72456.
Bao, Q.X., Mu, X.R., Tong, C., Li, C., Tao, W.Z., Zhao, S.T. et al. (2023) Sugar status in preexisting leaves determines systemic stomatal development within newly developing leaves. Proceedings of the National Academy of Sciences of the United States of America, 120(24), e2302854120.
Cho, Y.H., Sheen, J., & Yoo, S.D. (2010) Low glucose uncouples HXK1-dependent sugar signaling from stress and defense hormone ABA and C2H4 responses in Arabidopsis. Plant Physiology, 152(3), 1180–1182.
Gong, Y., Alassimone, J., Varnau, R., Sharma, N., Cheung, L.S. & Bergmann, D.C. (2021) Tuning self-renewal in the Arabidopsis stomatal lineage by hormone and nutrient regulation of asymmetric cell division. eLife, 10, e63335.
Han, C., Liu, Y., Shi, W., Qiao, Y., Wang, L., Tian, Y. et al. (2020) KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor. Nature Communications, 11(1), 4214.
Han, C., Qiao, Y., Yao, L., Hao, W., Liu, Y., Shi, W. et al. (2022) TOR and SnRK1 fine tune SPEECHLESS transcription and protein stability to optimize stomatal development in response to exogenously supplied sugar. The New phytologist, 234(1), 107–121.
Jang, J.C., León, P., Zhou, L. & Sheen, J. (1997) Hexokinase as a Sugar Sensor in Higher Plants. The Plant Cell, 9(1), 5–19.
Jeong, S.W., Das, P.K., Jeoung, S.C., Song, J.Y., Lee, H.K., Kim, Y.K. et al. (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiology, 154(3), 1514–1531.
Karve, A., Xia, X. & Moore, B. (2012) Arabidopsis Hexokinase-Like1 and Hexokinase1 Form a Critical Node in Mediating Plant Glucose and Ethylene Responses. Plant Physiology, 158(4), 1965–1975.
Kobayash, H. & Saka, H. (2000) Relationship between ethylene evolution and sucrose content in excised leaf blades of rice. Plant Production Science, 3(4), 398–403.
Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.H., Liu, Y.X. et al. (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 300(5617), 332–336.
Nishikawa, F., Iwama, T., Kato, M., Hyodo, H., Ikoma, Y. & Yano, M. (2005) Effect of sugars on ethylene synthesis and responsiveness in harvested broccoli florets. Postharvest Biology and Technology, 36(2), 157–165.
Philosoph-Hadas, S., Meir, S. & Aharoni, N. (1985) Carbohydrates stimulate ethylene production in tobacco leaf discs. II. Sites of stimulation in the ethylene biosynthesis pathway. Plant Physiology, 78(1), 139–143.
Reginato, M. A., H. Reinoso, A. S. Llanes, and M. V. Luna. 2013. “Stomatal Abundance and Distribution in Prosopis strombulifera Plants Growing under Different Iso-Osmotic Salt Treatments.” American Journal of Plant Sciences 4, no. 12: 80-90.
Zhou, L., Jang, J. C., Jones, T. L. & Sheen, J. (1998) Glucose and ethylene signal transduction crosstalk Revealed by an Arabidopsis glucose-insensitive mutant. Proceedings of the National Academy of Sciences of the United States of America, 95(17), 10294–10299.
三篇论文链接:
https://onlinelibrary.wiley.com/doi/10.1111/pce.15191;https://onlinelibrary.wiley.com/doi/10.1111/pce.15388;https://bsppjournals.onlinelibrary.wiley.com/doi/10.1111/mpp.70048